Last Updated: 26/05/2016

colour management, why do I need it?

why is colour management important?

colour management, why do I need it?

Anyone who has ever scanned an image or taken a digital photo, looked at it on a computer screen and then printed it can easily appreciate why we need colour management in digital imaging. Those things don't just automatically "match" and colour management is what solves the riddle of "why not?"

Input, display and output devices do not interpret digital colour the same way. Furthermore, whilst monitors, cameras and scanners use RGB colour; for the most part printers use CMYK inks or a variation on those to produce colour.

TC9.18 colour management profiling targetThe range (the gamut) of colours that can be created using red green and blue light is different from the range of colours which can be created by ink on paper. So, when images from the screen are reproduced on a printer or printing press, the colours are very unlikely to match without some intervention. Here, colour management provides a practically vital level of assistance.

"Perfectly ‘tuned’ colour management reduces ink consumption, improves quality and raises productivity thanks to increased speed and the capability to minimise remakes, as accurate colour reproduction reduces chances for errors." Dorin Pitigoi, colour management and industrial wide format printing, Graphics Display World

In the mid 90's, the introduction of Apple's Colorsync 2.0 technology was a milestone in colour management on the desktop. This system level software enabled the use of device profiles, these profiles characterize the devices we use by measuring the way those individual devices reproduce special test charts during the process of scanning or capture, printing or viewing. Microsoft introduced similar system level colour in Windows 2000.

the international color consortium

The Apple Color Consortium became the International Color Consortium in 1993, created in order to provide an open, vendor-neutral color management system which would function transparently across all operating systems and software packages.

When devices are accurately characterized by building good ICC profiles, system level software can help graphics applications compensate for the changes made when colour is handled by those devices. The ICC profiles describe colour spaces, colour spaces describe device capabilities.

Before the introduction of Colorsync, non standardised device descriptions had been used in some proprietary systems [e.g. Quark X, eficolor]. From '93 profiles could be made to ICC [International Colour Consortium] specifications and thus utilized across an ever expanding range of applications throughout the workflow.

Adobe's Photoshop 5 brought another significant enhancement to mainstream of digital imaging, the concept of the "Device Independent" image storage colour space - which we now call a "Working Space", further expanding the capabilities of colour management.

device independent working spaces

Device Independent Working Spaces contain image data in a linear and universally recognized form, so that image files can be edited in a predictable way and passed between devices and between users where computers and software recognise ICC profiles. An embedded ICC profile tag provides sufficient information about each file’s provenance to allow proper display and processing of the associated image.

Plainly, proper monitor display set-up and control, i.e. "calibration and profiling" is essential, because we need to be sure that what we see on a screen will be very similar - if not identical - to the same image seen by another compliant user. Be she originator, manipulator, colour corrector or the printer who will make the films and plates.

cross device colour matching

Colorthink CMYK and RGB comparedCross device colour matching and the ability to produce pleasing results is further enabled by the use of different Rendering Intents which are used during the conversion between colour spaces, (sometimes called a "profile to profile conversion") - e.g. from Input Device Profile to Working Space, Working Space to Display Screen or Working Space to Printer Profile.

This is an animated 3D gamut map of two example colour spaces. The colorthink animation shows a (translucent red) RGB workingspace as much larger than the (almost) enclosed CMYK (inkjet) print colourspace (the solid coloured shape). RGB original image data (part of my test image) is also shown as a cloud of dots, which are plainly well outside of the CMYK device capability and, thus, need to be carefully dealt with (scaled) during the profile to profile conversion. Rendering intents are very important here.

Rendering Intent choice should not be made by rule of thumb or even by blanket recommendation, it is actually far better if selecting a rendering intent is considered to be an image dependent creative choice. This is because the way in which the colours are translated in the calculations from one colour space to the other is controlled by Rendering Intent choice and can significantly affect final reproduction.

With good colour management protocols and accurate ICC profiles, colour matching becomes a sophisticated and almost universally available procedure, this allows expectations to be managed - with good continuity of appearance between input, display and output.

Would you like to talk for free about how colour management might benefit your own working process? please click here.

 

Top